Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Podstawą graniastosłupa prostego jest trójkąt równoramienny o ramionach długości a . Pole podstawy jest równe sumie pól dwóch przystających ścian bocznych graniastosłupa. Jakie powinny być długości pozostałych krawędzi graniastosłupa, aby jego objętość była największa?

Częścią wspólną płaszczyzny m i kuli k o środku S i promieniu R jest koło o . Jaka musi być odległość płaszczyzny m od środka kuli S , aby stożek o podstawie o i wierzchołku S miał największą możliwą objętość? Oblicz tę maksymalną objętość.

Rozpatrujemy wszystkie stożki, których przekrojem osiowym jest trójkąt o obwodzie 20. Oblicz wysokość i promień podstawy tego stożka, którego objętość jest największa. Oblicz objętość tego stożka.

*Ukryj

Przekrojem osiowym stożka jest trójkąt o obwodzie 40. Podaj promień podstawy i wysokość stożka o największej objętości. Oblicz jego objętość.

Rozpatrujemy wszystkie stożki, w których suma długości tworzącej i promienia podstawy jest równa 2. Wyznacz wysokość tego spośród rozpatrywanych stożków, którego objętość jest największa. Oblicz tę objętość.

Rozpatrujemy wszystkie trójkąty równoramienne o ramionach długości 6. Oblicz cosinus kąta między ramionami tego z tych trójkątów, dla którego objętość bryły powstałej w wyniku obrotu trójkąta dokoła prostej zawierającej jego podstawę jest największa możliwa. Oblicz tę największą objętość.

Rozpatrujemy wszystkie walce o danym polu powierzchni całkowitej P . Oblicz wysokość i promień podstawy tego walca, którego objętość jest największa. Oblicz tę największą objętość.

*Ukryj

Rozpatrujemy wszystkie graniastosłupy prawidłowe czworokątne o polu powierzchni całkowitej P . Wyznacz wysokość i długość krawędzi podstawy tego graniastosłupa, którego objętość jest największa. Oblicz tę największą objętość.

Romb o boku długości a obraca się dokoła jednej z przekątnych. Wyznacz pole tego spośród takich rombów, dla którego objętość otrzymanej bryły jest największa.

Dany jest prostokątny arkusz kartonu o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe naroża (zobacz rysunek).


PIC


Następnie zagięto karton wzdłuż linii przerywanych, tworząc w ten sposób prostopadłościenne pudełko (bez przykrywki). Oblicz długość boku wyciętych kwadratowych naroży, dla której objętość otrzymanego pudełka jest największa. Oblicz tę objętość.

*Ukryj

Dany jest prostokątny arkusz kartonu o długości 64 cm i szerokości 40 cm. Po dwóch stronach tego arkusza wycięto prostokąty, w których stosunek boków jest równy 1:2 (zacieniowane prostokąty na rysunku).


PIC


Następnie zagięto karton wzdłuż linii przerywanych, tworząc w ten sposób prostopadłościenne pudełko (bez przykrywki). Oblicz długości boków wyciętych prostokątów, dla których objętość otrzymanego pudełka jest największa. Oblicz tę objętość.

Podstawą prostopadłościanu jest prostokąt, w którym jeden bok jest dwa razy dłuższy od drugiego. Pole powierzchni całkowitej tego prostopadłościanu jest równe 1. Jakie powinny być wymiary tego prostopadłościanu, aby jego objętość była największa? Oblicz tę największą objętość.

*Ukryj

Rozpatrujemy wszystkie graniastosłupy prawidłowe czworokątne, których pole powierzchni całkowitej jest równe 2. Oblicz długości krawędzi tego graniastosłupa, który ma największą objętość. Podaj tę największą objętość.

Jaką największą objętość ma walec wpisany w kulę o średnicy długości 12 cm?

Rozpatrujemy wszystkie walce, których przekrojem osiowym jest prostokąt, w którym suma długości przekątnej i jednego boku jest równa 10. Oblicz wysokość i promień podstawy tego walca, którego objętość jest największa. Oblicz objętość tego walca.

Z kartonu w kształcie trójkąta równobocznego o boku długości 120 cm odcięto trzy identyczne czworokąty w narożnikach (zobacz rysunek).


PIC


Następnie zagięto karton wzdłuż linii przerywanych, tworząc w ten sposób pudełko w kształcie graniastosłupa trójkątnego prostego (bez przykrywki). Oblicz długość krawędzi podstawy tego pudełka, którego objętość jest największa. Oblicz tę objętość.

W ostrosłup prawidłowy czworokątny o wysokości H i krawędzi podstawy a wpisano walec, którego podstawa zawiera się w podstawie ostrosłupa, i którego oś symetrii pokrywa się z osią symetrii ostrosłupa. Jakie powinny być wymiary tego walca, aby jego objętość była największa możliwa? Oblicz tę największą objętość.


PIC


Suma długości wszystkich krawędzi prostopadłościanu jest równa 4M , a jedna z jego ścian na pole powierzchni dwa razy większe od innej ściany tego prostopadłościanu. Oblicz jaka jest powierzchnia całkowita tego prostopadłościanu, jeżeli jego objętość jest największa możliwa.

*Ukryj

Suma długości wszystkich krawędzi prostopadłościanu jest równa 4M , a jedna z jego ścian na pole powierzchni trzy razy większe od innej ściany tego prostopadłościanu. Oblicz jaka jest powierzchnia całkowita tego prostopadłościanu, jeżeli jego objętość jest największa możliwa.

Tworząca stożka ma długość b . Wyznacz wysokość tego stożka, którego objętość jest największa. Oblicz objętość tego stożka.

Rozpatrujemy wszystkie stożki o tworzącej długości l . Oblicz wysokość i promień podstawy tego stożka, którego objętość jest największa. Oblicz tę największą objętość.

Rozpatrujemy wszystkie stożki, w których suma sześcianów długości promienia podstawy i wysokości jest równa 12. Wyznacz ten spośród rozpatrywanych stożków, którego objętość jest największa. Oblicz tę objętość.

W stożek, którego wysokość ma długość H = 12 dm , a promień jego podstawy ma długość R = 4 dm wpisano walec, o podstawach równoległych do podstawy stożka. Jakie powinny być wymiary walca, aby jego objętość była największa?

Rozpatrujemy wszystkie możliwe drewniane szkielety o kształcie przedstawionym na rysunku, wykonane z listewek. Każda z tych listewek ma kształt prostopadłościanu o podstawie kwadratu o boku długości x . Wymiary szkieletu zaznaczono na rysunku.


PIC


  • Wyznacz objętość V drewna potrzebnego do budowy szkieletu jako funkcję zmiennej x .
  • Wyznacz dziedzinę funkcji V .
  • Oblicz tę wartość x , dla której zbudowany szkielet jest możliwie najcięższy, czyli kiedy funkcja V osiąga wartość największą. Oblicz tę największą objętość.
*Ukryj

Rozpatrujemy wszystkie możliwe drewniane szkielety o kształcie przedstawionym na rysunku, wykonane z listewek. Każda z tych listewek ma kształt prostopadłościanu o podstawie kwadratu o boku długości x . Wymiary szkieletu zaznaczono na rysunku.


PIC


  • Wyznacz objętość V drewna potrzebnego do budowy szkieletu jako funkcję zmiennej x .
  • Wyznacz dziedzinę funkcji V .
  • Oblicz tę wartość x , dla której zbudowany szkielet jest możliwie najcięższy, czyli kiedy funkcja V osiąga wartość największą. Oblicz tę największą objętość.

Rozpatrujemy wszystkie stożki, których pole powierzchni całkowitej jest równe P . Oblicz wysokość i promień podstawy tego stożka, który ma największą objętość. Podaj tę największą objętość.

Rozpatrujemy wszystkie walce, których pole powierzchni całkowitej jest równe 12 π . Wyznacz wysokość tego spośród rozpatrywanych walców, którego objętość jest największa. Oblicz tę objętość.

*Ukryj

Rozpatrujemy wszystkie walce, których pole powierzchni całkowitej jest równe 2π . Oblicz promień podstawy tego walca, który ma największą objętość. Podaj tę największą objętość.

Strona 1 z 2>