Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt/Prostokątny/Udowodnij...

Wyszukiwanie zadań

Dany jest trójkąt prostokątny ABC , w którym  ∘ |∡ABC | = 9 0 oraz |∡CAB | = 60∘ . Punkty K i L leżą na bokach – odpowiednio – AB i BC tak, że |BK | = |BL| = 1 (zobacz rysunek). Odcinek KL przecina wysokość BD tego trójkąta w punkcie N , a ponadto |AD | = 2 .


ZINFO-FIGURE


Wykaż, że  √ -- |ND | = 3+ 1 .

Wykaż, że wysokość CD trójkąta prostokątnego ABC poprowadzona z wierzchołka C kąta prostego dzieli przeciwprostokątną na odcinki AD i DB , których stosunek długości jest równy stosunkowi kwadratów długości przyprostokątnych odpowiednio AC i BC tego trójkąta.

Dany jest trójkąt prostokątny ABC , w którym  ∘ |∡ACB | = 90 i  √ -- sin ∡BAC = --10- 5 . Niech D oznacza punkt wspólny wysokości poprowadzonej z wierzchołka C kąta prostego i przeciwprostokątnej AB tego trójkąta. Wykaż, że |AD | : |DB | = 3 : 2 .

Dany jest trójkąt prostokątny ABC . Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G . Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że |∡DEC | = |∡BGF | = 9 0∘ (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta FBG .


PIC


Ukryj Podobne zadania

Dany jest trójkąt prostokątny ABC . Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G . Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że |∡DEC | = |∡GF B | = 9 0∘ (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta GBF .


PIC


Dany jest trójkąt prostokątny ABC . Na przyprostokątnych AB i AC tego trójkąta obrano odpowiednio punkty D i E takie, że DE ∥ BC . Na przeciwprostokątnej BC wyznaczono punkt F taki, że |∡DF C | = 90∘ (zobacz rysunek). Wykaż, że trójkąt ADE jest podobny do trójkąta FBD .


PIC


Na zewnątrz równoramiennego trójkąta prostokątnego o przyprostokątnych równych a zbudowano kwadraty tak, że bok każdego kwadratu jest jednocześnie bokiem trójkąta. Środki symetrii tych kwadratów połączono odcinkami i otrzymano trójkąt MNP . Wykaż, że pole trójkąta MNP jest równe  2 a .


ZINFO-FIGURE


Ukryj Podobne zadania

Na zewnątrz równoramiennego trójkąta prostokątnego ABC zbudowano kwadraty tak, że bok każdego kwadratu jest jednocześnie bokiem trójkąta. Środki symetrii tych kwadratów połączono odcinkami i otrzymano trójkąt MNP . Wykaż, że pole trójkąta MNP jest dwa razy większe od pola trójkąta ABC .


ZINFO-FIGURE


Uzasadnij, że nie istnieje trójkąt prostokątny, w którym przeciwprostokątna ma długość 24, a kąty ostre α i β są takie, że cos α = 34 i tg β = 43 .

Wykaż, że jeżeli pole koła opisanego na trójkącie prostokątnym jest π razy większe od pola trójkąta, to trójkąt ten jest równoramienny.

Trójkąty prostokątne równoramienne ABC i CDE są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że |AD | = |BE | .


PIC


Ukryj Podobne zadania

Trójkąty prostokątne równoramienne ABC i ADE są położone tak, jak na poniższym rysunku.


PIC


Wykaż, że  √ -- |BD | = 2 ⋅|CE | .

Na podstawie twierdzenia Pitagorasa można udowodnić bardziej ogólną własność niż ta, o której mówi samo to twierdzenie.

Rozważmy trójkąt prostokątny ABC o kącie prostym przy wierzchołku A . Niech każdy z boków tego trójkąta: CA , AB , BC będzie podstawą trójkątów podobnych, odpowiednio: CAW 1 , ABW 2 , BCW 3 . Trójkąty te mają odpowiadające sobie kąty o równych miarach, odpowiednio przy wierzchołkach: W 1, W 2, W 3 .


ZINFO-FIGURE


Pola trójkątów: CAW 1 , ABW 2 , BCW 3 oznaczymy odpowiednio jako P 1,P 2,P3 . Udowodnij, że

P = P + P 3 1 2

Okrąg przechodzący przez końce przyprostokątnej BC trójkąta prostokątnego ABC przecina drugą przyprostokątną AC oraz przeciwprostokątną AB tego trójkąta odpowiednio w punktach E i F . Wykaż, że promień okręgu opisanego na trójkącie AF E jest równy 1|AE | 2 .


PIC


Punkt M przyprostokątnej BC trójkąta prostokątnego ABC zrzutowano na przeciwprostokątną AB otrzymując punkt N . Wykaż, że |∡MAN | = |∡MCN | .

W trójkącie prostokątnym suma cosinusów kątów ostrych jest równa 2√-3 3 . Wykaż, że iloczyn sinusów tych kątów jest równy 16 .

Ukryj Podobne zadania

W trójkącie prostokątnym suma sinusów kątów ostrych jest równa 3 2 . Wykaż, że iloczyn cosinusów tych kątów jest równy 58 .

Wykaż, że w trójkącie prostokątnym suma długości obu przyprostokątnych jest równa sumie długości średnic okręgów wpisanego i opisanego na tym trójkącie.

Ukryj Podobne zadania

Przyprostokątne trójkąta prostokątnego mają długości a i b , a jego przeciwprostokątna ma długość c . Wykaż, że promień okręgu wpisanego w ten trójkąt ma długość r = a+b−c- 2 .

W trójkącie prostokątnym jedna przyprostokątna jest 4 razy dłuższa od drugiej. Wykaż, że wysokość opuszczona na przeciwprostokątną dzieli ją na odcinki, z których jeden jest 16 razy dłuższy od drugiego.

Ukryj Podobne zadania

W trójkącie prostokątnym jedna przyprostokątna jest 3 razy dłuższa od drugiej. Wykaż, że wysokość opuszczona na przeciwprostokątną dzieli ją na odcinki, z których jeden jest 9 razy dłuższy od drugiego.

W trójkącie prostokątnym ABC przyprostokątne mają długości |AC | = b,|BC | = a , a wysokość opuszczona z wierzchołka kąta prostego ma długość h .


PIC


Wykaż, że jeżeli b2 = a ⋅h to  √- cos ∡BAC = -52−1- .

Trójkąty ABC i CDE są prostokątne oraz |∡BAC | = |∡DCE | . Punkty A ,C i E leżą na jednej prostej. Punkty K ,L i M są środkami odcinków AC ,CE i BD (zobacz rysunek). Wykaż, że kąt ∡KML jest prosty.


PIC


Ukryj Podobne zadania

Trójkąty ABC i CDE są równoramienne i prostokątne. Punkty A ,C i E leżą na jednej prostej, a punkty K ,L i M są środkami odcinków AC ,CE i BD (zobacz rysunek). Wykaż, że |MK | = |ML | .


PIC


Dany jest trójkąt prostokątny. Wykaż, że suma pól kół o średnicach będących przyprostokątnymi trójkąta jest równa polu koła o średnicy równej przeciwprostokątnej.

Ukryj Podobne zadania

Na bokach trójkąta prostokątnego zbudowano trójkąty równoboczne. Wykaż, że pole figury zbudowanej na przeciwprostokątnej jest równe sumie pól figur zbudowanych na przyprostokątnych.

Na przyprostokątnych AC i BC trójkąta prostokątnego ABC zbudowano, na zewnątrz trójkąta, kwadraty ACDE i BF GC . Odcinek AF przecina przyprostokątną BC w punkcie L , a odcinek BE przecina przyprostokątną AC w punkcie K (zobacz rysunek). Udowodnij, że |KC | = |LC | .


PIC


Trójkąt ABC jest prostokątny. Punkt D jest spodkiem wysokości opuszczonej na przeciwprostokątną BC oraz |DC | = 13|BD | (patrz rysunek). Wykaż, że |∡ABD | = 30∘ .


PIC


Strona 1 z 2
spinner