Dany jest trójkąt prostokątny , w którym oraz . Punkty i leżą na bokach – odpowiednio – i tak, że (zobacz rysunek). Odcinek przecina wysokość tego trójkąta w punkcie , a ponadto .
Wykaż, że .
Dany jest trójkąt prostokątny , w którym oraz . Punkty i leżą na bokach – odpowiednio – i tak, że (zobacz rysunek). Odcinek przecina wysokość tego trójkąta w punkcie , a ponadto .
Wykaż, że .
Wykaż, że wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki i , których stosunek długości jest równy stosunkowi kwadratów długości przyprostokątnych odpowiednio i tego trójkąta.
Dany jest trójkąt prostokątny , w którym i . Niech oznacza punkt wspólny wysokości poprowadzonej z wierzchołka kąta prostego i przeciwprostokątnej tego trójkąta. Wykaż, że .
Dany jest trójkąt prostokątny . Na przyprostokątnych i tego trójkąta obrano odpowiednio punkty i . Na przeciwprostokątnej wyznaczono punkty i takie, że (zobacz rysunek). Wykaż, że trójkąt jest podobny do trójkąta .
Dany jest trójkąt prostokątny . Na przyprostokątnych i tego trójkąta obrano odpowiednio punkty i . Na przeciwprostokątnej wyznaczono punkty i takie, że (zobacz rysunek). Wykaż, że trójkąt jest podobny do trójkąta .
Dany jest trójkąt prostokątny . Na przyprostokątnych i tego trójkąta obrano odpowiednio punkty i takie, że . Na przeciwprostokątnej wyznaczono punkt taki, że (zobacz rysunek). Wykaż, że trójkąt jest podobny do trójkąta .
Na zewnątrz równoramiennego trójkąta prostokątnego o przyprostokątnych równych zbudowano kwadraty tak, że bok każdego kwadratu jest jednocześnie bokiem trójkąta. Środki symetrii tych kwadratów połączono odcinkami i otrzymano trójkąt . Wykaż, że pole trójkąta jest równe .
Na zewnątrz równoramiennego trójkąta prostokątnego zbudowano kwadraty tak, że bok każdego kwadratu jest jednocześnie bokiem trójkąta. Środki symetrii tych kwadratów połączono odcinkami i otrzymano trójkąt . Wykaż, że pole trójkąta jest dwa razy większe od pola trójkąta .
Uzasadnij, że nie istnieje trójkąt prostokątny, w którym przeciwprostokątna ma długość 24, a kąty ostre i są takie, że i .
Wykaż, że jeżeli pole koła opisanego na trójkącie prostokątnym jest razy większe od pola trójkąta, to trójkąt ten jest równoramienny.
Trójkąty prostokątne równoramienne i są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku jest prosty). Wykaż, że .
Trójkąty prostokątne równoramienne i są położone tak, jak na poniższym rysunku.
Wykaż, że .
Na podstawie twierdzenia Pitagorasa można udowodnić bardziej ogólną własność niż ta, o której mówi samo to twierdzenie.
Rozważmy trójkąt prostokątny o kącie prostym przy wierzchołku . Niech każdy z boków tego trójkąta: będzie podstawą trójkątów podobnych, odpowiednio: , , . Trójkąty te mają odpowiadające sobie kąty o równych miarach, odpowiednio przy wierzchołkach: .
Pola trójkątów: , , oznaczymy odpowiednio jako . Udowodnij, że
Okrąg przechodzący przez końce przyprostokątnej trójkąta prostokątnego przecina drugą przyprostokątną oraz przeciwprostokątną tego trójkąta odpowiednio w punktach i . Wykaż, że promień okręgu opisanego na trójkącie jest równy .
Punkt przyprostokątnej trójkąta prostokątnego zrzutowano na przeciwprostokątną otrzymując punkt . Wykaż, że .
W trójkącie prostokątnym suma cosinusów kątów ostrych jest równa . Wykaż, że iloczyn sinusów tych kątów jest równy .
W trójkącie prostokątnym suma sinusów kątów ostrych jest równa . Wykaż, że iloczyn cosinusów tych kątów jest równy .
Wykaż, że w trójkącie prostokątnym suma długości obu przyprostokątnych jest równa sumie długości średnic okręgów wpisanego i opisanego na tym trójkącie.
Przyprostokątne trójkąta prostokątnego mają długości i , a jego przeciwprostokątna ma długość . Wykaż, że promień okręgu wpisanego w ten trójkąt ma długość .
W trójkącie prostokątnym jedna przyprostokątna jest 4 razy dłuższa od drugiej. Wykaż, że wysokość opuszczona na przeciwprostokątną dzieli ją na odcinki, z których jeden jest 16 razy dłuższy od drugiego.
W trójkącie prostokątnym jedna przyprostokątna jest 3 razy dłuższa od drugiej. Wykaż, że wysokość opuszczona na przeciwprostokątną dzieli ją na odcinki, z których jeden jest 9 razy dłuższy od drugiego.
Wykaż, że jeśli są kątami ostrymi trójkąta prostokątnego, to .
W trójkącie prostokątnym przyprostokątne mają długości , a wysokość opuszczona z wierzchołka kąta prostego ma długość .
Wykaż, że jeżeli to .
Trójkąty i są prostokątne oraz . Punkty i leżą na jednej prostej. Punkty i są środkami odcinków i (zobacz rysunek). Wykaż, że kąt jest prosty.
Trójkąty i są równoramienne i prostokątne. Punkty i leżą na jednej prostej, a punkty i są środkami odcinków i (zobacz rysunek). Wykaż, że .
Dany jest trójkąt prostokątny. Wykaż, że suma pól kół o średnicach będących przyprostokątnymi trójkąta jest równa polu koła o średnicy równej przeciwprostokątnej.
Na bokach trójkąta prostokątnego zbudowano trójkąty równoboczne. Wykaż, że pole figury zbudowanej na przeciwprostokątnej jest równe sumie pól figur zbudowanych na przyprostokątnych.
Na przyprostokątnych i trójkąta prostokątnego zbudowano, na zewnątrz trójkąta, kwadraty i . Odcinek przecina przyprostokątną w punkcie , a odcinek przecina przyprostokątną w punkcie (zobacz rysunek). Udowodnij, że .
Trójkąt jest prostokątny. Punkt jest spodkiem wysokości opuszczonej na przeciwprostokątną oraz (patrz rysunek). Wykaż, że .