Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Dla każdej liczby rzeczywistej b równanie  1 2 y = 2x − bx + 2 opisuje pewną parabolę. Wyznacz wszystkie wartości parametru b , dla których wierzchołek paraboli leży nad osią Ox .

Wykres funkcji kwadratowej f danej wzorem  2 f(x) = x − 3x + 6 przecięto prostymi o równaniach x = 1 oraz x = − 2 . Oblicz odległość między punktami przecięcia tych prostych z wykresem funkcji f .

*Ukryj

Wykres funkcji kwadratowej f danej wzorem  2 f(x) = x + 3x − 4 przecięto prostymi o równaniach x = − 1 oraz x = 2 . Oblicz odległość między punktami przecięcia tych prostych z wykresem funkcji f .

Pole obszaru ograniczonego wykresem funkcji  2 y = x dla x ∈ ⟨0,1⟩ i osią Ox możemy obliczyć z dowolną dokładnością, zwiększając liczbę n prostokątów o szerokości 1n każdy (patrz rysunek) i sumując ich pola.


PIC


  • Przedstaw ilustrację graficzną takiej sytuacji dla n = 4 i oblicz sumę pól otrzymanych prostokątów.
    PIC

  • Oblicz sumę S n pól n prostokątów, wykorzystując wzór:
     n(n + 1)(2n + 1 ) 12 + 22 + 32 + ... + n2 = -----------------. 6

Naszkicuj wykres funkcji  2 y = x − 4 .

*Ukryj

Naszkicuj wykres funkcji  2 y = x − 3x − 10 .

Naszkicuj wykres funkcji  2 y = (x+ 2) + 1 .

Naszkicuj wykres funkcji  2 y = − 3x − 6x − 8 .

Naszkicuj wykres funkcji y = − (x− 2)(x+ 4) .

Naszkicuj wykres funkcji  2 y = −x + 4x+ 2 .

Dany jest trójmian kwadratowy f o współczynniku 3 przy najwyższej potędze x . Wierzchołek paraboli będącej wykresem tego trójmianu ma współrzędne W = (5;− 10) . Wyznacz f(10 ) .

*Ukryj

Dany jest trójmian kwadratowy f o współczynniku 4 przy najwyższej potędze x . Wierzchołek paraboli będącej wykresem tego trójmianu ma współrzędne W = (4;− 9) . Wyznacz f(10) .

Napisz równanie osi symetrii wykresu funkcji  2 f (x) = − 3x + 5x + 9 .

Prosta  25 x = 3 jest osią symetrii paraboli będącej wykresem funkcji kwadratowej y = f (x) . Do wykresu tego należy punkt o współrzędnych ( ) − 523,16 . Wyznacz wszystkie rozwiązania równania f(x) = 16 .

Naszkicuj  2 f(x) = x oraz g (x) = x + 3 i na ich podstawie określ liczbę pierwiastków równania x2 = x + 3 oraz znaki tych pierwiastków.

Funkcja kwadratowa f , której miejscami zerowymi są liczby − 4 i 6, dla argumentu 1 przyjmuje wartość 2 12 . Uzasadnij, że wykres funkcji f ma dwa punkty wspólne z prostą y = 2 .

*Ukryj

Funkcja kwadratowa f , której miejscami zerowymi są liczby − 5 i 7, dla argumentu 1 przyjmuje wartość − 3 . Uzasadnij, że wykres funkcji f ma dwa punkty wspólne z prostą y = − 2 .

Wykresy funkcji kwadratowych  2 f(x ) = 3x − 2mx − m oraz  2 g (x) = mx + x + 3 , dla m ⁄= 0 , przecinają się w dwóch punktach. Wyznacz wszystkie wartości m , dla których iloraz sumy odciętych tych punktów przez ich iloczyn jest o 18 mniejszy od największej wartości funkcji g .

Wykres funkcji f , określonej dla x ∈ R następującym wzorem

 2 f(x) = (a− 3 )x − 2ax + 3a − 6

przecina dodatnią półoś Ox w dwóch różnych punktach.

  • Oblicz wartość wyrażenia |(a−-1)(8−a)(a−7)(2a−3)| (a− 1)(8−a)(a−7)(2a−3) .
  • Uzasadnij, że dla każdych dwóch liczb rzeczywistych m > n > 0 spełniona jest nierówność  2 2 f(−m ) > f(−n ) .

Dla jakich wartości parametru m ∈ R wierzchołek paraboli y = x2 + 2(m + 1 )x+ m − 4 leży najbliżej prostej y = − 4 ?

*Ukryj

Dla jakich wartości parametru m ∈ R wierzchołek paraboli  2 y = x − 2(m − 1)x− m leży najbliżej osi Ox .

Na rysunku przedstawiono fragmenty wykresów funkcji kwadratowej oraz trzech funkcji liniowych. Zaznaczono również niektóre punkty szczególne tych wykresów: A = (0,2) , B = (3,5) i C = (4,2) . Wyznacz współrzędne punktów D ,E i F .


PIC


Dana jest funkcja kwadratowa określona wzorem  2 f(x ) = − (x− 2) + 4 .

  • podaj współrzędne wierzchołka paraboli będącej wykresem tej funkcji.
  • podaj zbiór wartości tej funkcji.
  • podaj równanie osi symetrii paraboli będącej wykresem tej funkcji.
  • podaj wzór tej funkcji w postaci ogólnej.
*Ukryj

Dana jest funkcja kwadratowa określona wzorem  2 f(x ) = 2(x − 1) + 3 .

  • podaj współrzędne wierzchołka paraboli będącej wykresem tej funkcji.
  • podaj zbiór wartości tej funkcji.
  • podaj równanie osi symetrii paraboli będącej wykresem tej funkcji.
  • podaj wzór tej funkcji w postaci ogólnej.

Korzystając z wykresów funkcji f(x ) = 2x i  2 g(x ) = x − 3 rozwiąż nierówność 0,5x2 − x − 1,5 ≤ 0 .

Dana jest funkcja  2 f(x ) = −x + 6x − 5 .

  • Narysuj parabolę, która jest wykresem funkcji f i zaznacz na rysunku współrzędne jej wierzchołka oraz punktów przecięcia paraboli z osiami układu współrzędnych.
  • Odczytaj z wykresu zbiór wartości funkcji f .
  • Rozwiąż nierówność f(x) ≥ 0 .

PIC