Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Rozwiązaniem układu równań { y − x − 1 = 0 x + y − 3 = 0 jest para
A) x = 1 i y = 2 B) x = 1 i y = − 2 C) x = 2 i y = 3 D) x = 3 i y = 2

*Ukryj

Rozwiązaniem układu równań { 2x + 5y = − 1 3x − 5y = 11 jest
A) { x = 2 y = 1 B) { x = 2 y = − 1 C) { x = 1 y = 2 D) { x = 1 y = − 2

Rozwiązaniem układu równań { 2y − x − 3 = 0 x + 2y − 1 = 0 jest para
A) x = − 1 i y = 1 B) x = 1 i y = 1 C) x = 1 i y = − 1 D) x = − 1 i y = − 1

Rozwiązaniem układu równań { 5x + 3y = 3 8x − 6y = 48 jest para liczb
A) x = −3 i y = 4 B) x = − 3 i y = 6 C) x = 3 i y = − 4 D) x = 9 i y = 4

Układ równań { x+ y− 6 = 0 x− y+ 4 = 0 opisuje w układzie współrzędnych na płaszczyźnie punkt
A) (1,5) B) (− 1,5 ) C) (1,− 5) D) (− 1,− 5)

Rozwiązaniem układu równań { 21x − 14y = − 28 6y + 9x = 48 jest para liczb
A) x = −3 i y = 5 B) x = − 3 i y = 6 C) x = 5 i y = 2 D) x = 2 i y = 5

Rozwiązaniem układu równań { x + 3y = 5 2x − y = 3 jest
A) { x = 2 y = 1 B) { x = 2 y = − 1 C) { x = 1 y = 2 D) { x = 1 y = − 2

Układ równań { 6x = 10y + 1 8 15y− 9x + 27 = 0
A) ma dokładnie jedno rozwiązanie. B) ma dwa rozwiązania.
C) ma nieskończenie wiele rozwiązań. D) nie ma rozwiązań.

*Ukryj

Układ równań { 3 y− 8x = − 3 14x − 23y = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { 2x− 3y = 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 2x− 3y = − 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 1 2 4x − 3y = 2 y− 38x = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { 1 2 4x − 3y = 2 y− 38x = − 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Pary liczb (x,y) = (2 ,− 1 ) i (x ,y) = (5,− 2) należą do zbioru rozwiązań układu równań
A) { x + 3y = − 1 2x + 3y = 1 B) { 2x + y = 3 4x + 2y = 6 C) { 2x + 6y = − 2 3x + 9y = − 3 D) { 2x+ 3y = 1 2x+ 3y = 4

*Ukryj

Pary liczb (x,y) = (2 ,− 1 ) i (x ,y) = (− 1,5) należą do zbioru rozwiązań układu równań
A) { x + 3y = − 1 2x + 3y = 1 B) { 2x + 3y = 1 2x + 3y = 4 C) { 2x + 6y = − 2 3x + 9y = − 3 D) { 2x+ y = 3 4x+ 2y = 6

Liczby rzeczywiste a,b,c spełniają warunki: a + b = 3 , b+ c = 4 i c+ a = 5 . Wtedy suma a+ b+ c jest równa
A) 20 B) 6 C) 4 D) 1

*Ukryj

Liczby rzeczywiste a,b,c spełniają warunki: a + b = − 4 , b+ c = 7 i c + a = 1 . Wtedy suma a + b + c jest równa
A) − 10 B) 8 C) 4 D) 2

Układem sprzecznym jest układ
A) { x − 2y = 3 3x − 6y = 9 B) { −x + 2y = 2 3x − 6y = 9 C) { x − y = 4 3x − 6y = 9 D) { x+ 2y = 3 3x− 6y = 9

*Ukryj

Układem sprzecznym jest układ
A) { 1 5x− 21y = 9 5x − 7y = 3 B) { x + 2y = 2 5x − 7y = 3 C) { 10x − 14y = 9 5x − 7y = 3 D) { x+ 2y = 3 5x− 7y = 3

Układem sprzecznym jest układ
A) { x − 3y = 3 2x − 6y = 6 B) { x − y = 4 2x − 6y = 6 C) { −x + 3y = 2 2x − 6y = 6 D) { x+ 3y = 3 2x− 6y = 6

Wskaż układ, który ma nieskończenie wiele rozwiązań.
A) { x − y = 4 3x − 6y = 9 B) { −x + 2y = 2 3x − 6y = 9 C) { x − 2y = 3 3x − 6y = 9 D) { x+ 2y = 3 3x− 6y = 9

Układem sprzecznym jest układ
A) { x − 5y = 3 2x − 10y = 6 B) { −x − 5y = 2 2x − 1 0y = 6 C) { x − y = 4 2x − 1 0y = 6 D) { x− 5y = 2 2x− 10y = 6

Rozwiązaniem układu równań { 15- 259- 137y − 137x = 2 132579x + 392569y = 1 jest para liczb
A) x = 1 i y = − 1 B) x = 1 i y = 1 C) x = − 1 i y = 1 D) x = − 1 i y = − 1

Na jednym z poniższych rysunków przedstawiono interpretację geometryczną układu równań ( |{ x− 3y = 3 |( 2y − 3x = 6 3y + x = − 6 Wskaż ten rysunek.


PIC


Interpretację geometryczną układu równań { x− y = 2 −2x + 2y = 4. przedstawiono na rysunku:


PIC


*Ukryj

Na jednym z poniższych rysunków przedstawiono interpretację geometryczną układu równań { x− 3y = 5 3x− 2y = − 4. Wskaż ten rysunek:


PIC


Ilustracja graficzna układu równań { 2x − y = 4 x + 2y = 7 jest przedstawiona na rysunku:


PIC


Na jednym z poniższych rysunków przedstawiono interpretację geometryczną układu równań { x+ 3y = − 5 3x− 2y = − 4. Wskaż ten rysunek


PIC


Układ równań { √ -- √ -- √ 6x− 2y = 2 √3-- 6y− 3x = − 3 2
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C)ma nieskończenie wiele rozwiązań. D) ma dokładnie dwa rozwiązania.

Rozwiązaniem układu równań { 3x − 5y = 0 2x − y = 14 jest para (x,y ) liczb takich, że
A) x < 0 i y < 0 B) x < 0 i y > 0 C) x > 0 i y < 0 D) x > 0 i y > 0

*Ukryj

Rozwiązaniem układu równań { 5x + 3y = 0 2y + x = 14 jest para (x,y ) liczb takich, że
A) x < 0 i y < 0 B) x < 0 i y > 0 C) x > 0 i y < 0 D) x > 0 i y > 0

Rozwiązanie (x,y) układu równań { x − y = 4 3x + y = 10 spełnia warunki
A) x > 0 i y > 0 B) x < 0 i y > 0 C) x < 0 i y < 0 D) x > 0 i y < 0

Dany jest układ równań: { 6x − 3y = 2 2x − y = 1. Prawdziwe jest zdanie:
A) jednym z rozwiązań układu jest para liczb  1 1 (2 ,3)
B) układ równań ma nieskończenie wiele rozwiązań
C) układ równań nie ma rozwiązań
D) układ równań ma dokładnie jedno rozwiązanie

*Ukryj

Układ równań { x− y = − 3 −3x + 3y = 6
A) nie ma rozwiązania
B) ma nieskończenie wiele rozwiązań
C) ma rozwiązanie (x,y) = (− 1,1)
D) ma rozwiązanie (x,y) = (− 4,− 1)

Dany jest układ równań: { 9x + 6y = 6 3x + 2y = 2. Prawdziwe jest zdanie:
A) jednym z rozwiązań układu jest para liczb  1 1 (2 ,3)
B) układ równań ma nieskończenie wiele rozwiązań
C) układ równań nie ma rozwiązań
D) układ równań ma dokładnie jedno rozwiązanie

Układ równań { 4x+ 5y = 2 8x+ 10y = p dla p = 3
A) ma jedno rozwiązanie
B) ma dwa rozwiązania
C) nie ma rozwiązań
D) ma nieskończenie wiele rozwiązań

Układ równań { x− y = 3 2x+ 0,5y = 4 opisuje w układzie współrzędnych na płaszczyźnie
A) zbiór pusty. B) dokładnie jeden punkt.
C) dokładnie dwa różne punkty. D) zbiór nieskończony.

*Ukryj

Rozwiązaniem układu równań { x − y = 2 y + 2x = 4 w prostokątnym układzie współrzędnych na płaszczyźnie jest
A) prosta y = x B) dwa punkty C) zbiór pusty D) jeden punkt

Układ równań { 3x− 12y = 4 0,5x − 2y = 1 opisuje w układzie współrzędnych na płaszczyźnie
A) zbiór pusty. B) dokładnie jeden punkt.
C) dokładnie dwa różne punkty. D) zbiór nieskończony.

Na rysunku przedstawiono wykresy trzech parami przecinających się prostych


PIC


Te proste to
A) ( | x− 2y = − 1 { | 3x+ y = 11 ( 3x+ 8y = − 17 B) ( | x − 2y = − 1 { | 3x + y = − 11 ( 3x + 8y = − 17 C) ( |{ x − 2y = 1 3x + y = 11 |( 3x + 8y = − 17 D) ( |{ x− 2y = − 1 | 3x + y = 11 ( 3x + 8y = 1 7

Jeżeli 3x + 2y = 17 i 4x + 3y = 13 to
A) x = 25 B) x = 29 C) x = − 29 D) y = 25

*Ukryj

Jeżeli 3x − 2y = 29 i 2x + 3y = 2 to
A) x = −4 B) x = 7 C) x = − 29 D) y = 4

Jeżeli x + y = 17 i x − y = 1 3 to
A) x = 2 B) y = 15 C) y = 2 D) x = − 2

*Ukryj

Jeżeli 7x + 9y = 32 i 7x − 9y = − 4 to
A) x = −2 B) y = 2 C) y = −2 D) x = 7