Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej m prawdziwa jest nierówność 20x2 − 24mx + 1 8m 2 ≥ 4x+ 12m − 5 .

*Ukryj

Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej m prawdziwa jest nierówność 18x2 − 36mx + 2 2m 2 ≥ 24x − 12m − 17 .

Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej m prawdziwa jest nierówność 8x2 − 4mx + 2m 2 ≥ 12x + 6m − 18 .

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność x2 + y2 + 3x − xy + 5 ≥ 0 .

Wykaż, że dla każdych liczb rzeczywistych x oraz a prawdziwa jest nierówność

(x+ 2a)2 ≥ 8ax .
*Ukryj

Wykaż, że dla dowolnych liczb rzeczywistych a i b prawdziwa jest nierówność

4a (a+ b)+ b 2 ≥ 8ab.

Wykaż, że dla dowolnych różnych liczb rzeczywistych a i b prawdziwa jest nierówność

a(a + b)+ b2 > 3ab.

Wykaż, że dla dowolnej liczby całkowitej k prawdziwa jest nierówność 9k2 + 9k + 2 > 0 .

Wykaż, że dla każdej liczby rzeczywistej a i każdej liczby rzeczywistej b prawdziwa jest nierówność

( )2 2 2 a-+-b- a-+--b- 2 ≤ 2 .

Wykaż, ze dla dowolnych liczb rzeczywistych a,b,c prawdziwa jest nierówność

 2 2 2 a-+--b-+-c--≥ a+ b+ c− 3. 2 2

Wykaż, że dla m = 3 nierówność  2 x + (2m − 3)x + 2m + 5 > 0 jest spełniona przez wszystkie liczby rzeczywiste x .

Wykaż, że rozwiązaniem nierówności  2 √ -- √ -- x − 3x + 2x − 3 2 < 0 jest przedział  √ -- (− 2,3) .

Wykaż, że dla dowolnych liczb rzeczywistych a,b,c ∈ R zachodzi nierówność

a2 + 4b2 + 3c2 + 13 ≥ 2a + 12b + 6c.

Udowodnij, że dla dowolnych liczb rzeczywistych a,b prawdziwa jest nierówność

a2 + b2 + 1 ≥ a+ b+ ab .

Wykaż, że jeżeli x + y = 5 , to  2 2 25 x + y ≥ 2 .

*Ukryj

Wykaż, że jeżeli a + b = 4 , to  2 2 a + b ≥ 8 .

Wykaż, że jeżeli a + b = 6 , to  2 2 a + b ≥ 18 .

Wykaż, że dla każdej liczby rzeczywistej x większej od 2 i dla każdej liczby rzeczywistej y prawdziwa jest nierówność 5x2 − 6xy + 3y 2 − 2x − 4 > 0 .

*Ukryj

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y większej od 1 prawdziwa jest nierówność 2x2 + 4y 2 + 1 > 4xy + 3y .

Udowodnij, że dla dowolnych liczb rzeczywistych x,y ,z takich, że x + y + z = 0 , prawdziwa jest nierówność xy + yz + zx ≤ 0 .
Możesz skorzystać z tożsamości (x+ y+ z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz .

Udowodnij, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność

5x2 + y2 − 4xy + 6x + 9 ≥ 0.

Wykaż, ze dla dowolnych liczb rzeczywistych a,b prawdziwa jest nierówność a2 + b2 + 2 ≥ 2(a + b) .

*Ukryj

Wykaż, ze dla dowolnych liczb rzeczywistych a,b prawdziwa jest nierówność a2 + b2 ≥ − 2(a + b + 1) .

Wykaż, ze dla dowolnych liczb rzeczywistych x,y prawdziwa jest nierówność  2 2 x + y ≥ x-+y-+2- − 2 .

Wykaż, ze dla dowolnych liczb rzeczywistych a,b prawdziwa jest nierówność a2 + b2 ≥ − 2(a + b) − 2 .

Wykaż, ze dla dowolnych liczb rzeczywistych a,b prawdziwa jest nierówność a2 + b2 ≥ 2(a + b − 1) .

Wykaż, ze dla dowolnych liczb rzeczywistych x,y prawdziwa jest nierówność  2 4 x-+y- ≥ x+ y2 − 1 2 .

Wykaż, ze dla dowolnych liczb rzeczywistych x,y prawdziwa jest nierówność  2 2 x + y ≤ x-+y-+2- 2 .

Wykaż, że dla dowolnych liczb rzeczywistych a i b prawdziwa jest nierówność

2a2 − 4ab + 5b2 ≥ 0.

Wykaż, że dla dowolnych liczb rzeczywistych a i b prawdziwa jest nierówność

3a2 − 2ab + 3b2 ≥ 0.

Wykaż, że jeżeli a > b > 3 , to ab+ 6 > 2b + 3a .

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność 4x2 − 8xy + 5y 2 ≥ 0 .

*Ukryj

Udowodnij, że dla dowolnych liczb rzeczywistych x,y prawdziwa jest nierówność 3x2 + 5y2 − 4xy ≥ 0 .

Wykaż, że dla każdej liczby rzeczywistej a i dla każdej liczby rzeczywistej b prawdziwa jest nierówność 5a2 + b2 ≥ 4ab .

Wykaż, że dla każdej liczby rzeczywistej a i dla każdej liczby rzeczywistej b prawdziwa jest nierówność 4a2 + 3b2 ≥ 4ab .

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność 3x2 − 6xy + 5y 2 ≥ 0 .

Wykaż, że dla każdej liczby rzeczywistej x prawdziwa jest nierówność x 2 + 4 ≥ 4x .

*Ukryj

Wykaż, że dla każdej liczby rzeczywistej x prawdziwa jest nierówność x 2 + 1 ≥ 2x .

Wykaż, że dla każdej liczby rzeczywistej x prawdziwa jest nierówność − x2 ≤ 2x + 1 .

Uzasadnij, że jeżeli liczby rzeczywiste a,b spełniają warunek ab ≤ −3 , to a2 + b2 ≥ 6 .

Dana jest nierówność kwadratowa z parametrem m :

 2 x + 8x− 7+ m < 0.
  • Wyznacz wszystkie wartości parametru m , dla których przedział (3,4) zawiera się w zbiorze rozwiązań tej nierówności.
  • Uzasadnij, że jeżeli dla pewnej wartości parametru m nierówność ta ma rozwiązanie w przedziale (3,4) , to ma ona w tym przedziale nieskończenie wiele rozwiązań.

Uzasadnij, że nierówność  2 2 a + b ≥ 2ab − 1 jest prawdziwa dla dowolnych liczb rzeczywistych a i b .

*Ukryj

Wykaż, że dla każdych dwóch różnych liczb rzeczywistych a i b prawdziwa jest nierówność

a(a − 2b) + 2b2 > 0.

Wykaż, że dla każdych dwóch liczb rzeczywistych a i b prawdziwa jest nierówność

b(b − 4a) + 5a2 ≥ 0.
Strona 1 z 2>