Dany jest rosnący ciąg geometryczny , którego wszystkie wyrazy i iloraz są liczbami całkowitymi nieparzystymi. Jeśli największy wyraz ciągu zmniejszymy o 4, to otrzymamy ciąg arytmetyczny. Oblicz wyraz tego ciągu.
/Szkoła średnia/Ciągi/Arytmetyczny i geometryczny/Trzywyrazowy
Dany jest malejący ciąg geometryczny , którego wszystkie wyrazy i iloraz są liczbami całkowitymi niepodzielnymi przez 3. Jeśli najmniejszy wyraz ciągu zwiększymy o 18, to otrzymamy ciąg arytmetyczny. Oblicz wyraz tego ciągu.
Liczby są kolejnymi wyrazami ciągu arytmetycznego. Jeśli liczbę zmniejszymy o 5, a liczbę zwiększymy o 17, to otrzymane liczby będą kolejnymi wyrazami ciągu geometrycznego. Wyznacz wartości liczbowe i .
Liczby są kolejnymi wyrazami ciągu arytmetycznego. Jeśli liczbę zwiększymy o 1, a liczbę zwiększymy o 3, to otrzymane liczby będą kolejnymi wyrazami ciągu geometrycznego. Wyznacz i .
Trzy liczby tworzą ciąg arytmetyczny o . Jeżeli pierwszą powiększymy o 8 drugą o 6 a trzecią pozostawimy bez zmian to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Znajdź te liczby.
Trzy liczby tworzą ciąg arytmetyczny o . Jeżeli pierwszą powiększymy o 3 drugą o 1 a trzecią pozostawimy bez zmian to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Znajdź te liczby.
Trzy liczby, których suma jest równa 93, tworzą ciąg geometryczny. Te same liczby stanowią pierwszy, drugi oraz siódmy wyraz ciągu arytmetycznego. Wyznacz te liczby.
Trzy liczby tworzą rosnący ciąg geometryczny. Suma tych liczb jest równa 28. Liczby te są jednocześnie 1, 2 i 4 wyrazem ciągu arytmetycznego. Jakie to liczby?
Liczby w podanej kolejności, tworzą ciąg geometryczny. Suma tych liczb wynosi 13. Te same liczby, w podanej kolejności, są odpowiednio pierwszym, drugim i piątym wyrazem ciągu arytmetycznego. Wyznacz, oraz .
Trzywyrazowy ciąg jest geometryczny i rosnący. Suma wyrazów tego ciągu jest równa 105. Liczby oraz są – odpowiednio – pierwszym, drugim oraz szóstym wyrazem ciągu arytmetycznego , określonego dla każdej liczby naturalnej . Oblicz oraz .
W trzywyrazowym ciągu geometrycznym spełniona jest równość . Wyrazy są – odpowiednio – dziewiątym, trzecim i pierwszym wyrazem rosnącego ciągu arytmetycznego. Oblicz .
W trzywyrazowym ciągu geometrycznym spełniona jest równość . Wyrazy są – odpowiednio – czwartym, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego. Oblicz .
Trzy liczby, których suma jest równa 105, są kolejnymi wyrazami rosnącego ciągu geometrycznego. Pierwsza z tych liczb jest jednocześnie pierwszym, druga szóstym, a trzecia dwudziestym szóstym wyrazem pewnego ciągu arytmetycznego. Oblicz te liczby.
Trzy liczby są kolejnymi wyrazami ciągu arytmetycznego. Ich suma wynosi 18. Jeśli największą z tych liczb zwiększymy o 8, a pozostałych nie zmienimy, to uzyskamy trzy kolejne wyrazy ciągu geometrycznego. Wyznacz te liczby.
Trzy liczby są kolejnymi wyrazami ciągu arytmetycznego. Ich suma wynosi 27. Jeśli największą z tych liczb zwiększymy o 12, a pozostałych nie zmienimy, to uzyskamy trzy kolejne wyrazy ciągu geometrycznego. Wyznacz te liczby.
Trzy liczby tworzą ciąg geometryczny. Jeżeli drugą z nich zwiększymy o 8, to otrzymamy ciąg arytmetyczny. Jeżeli trzeci wyraz otrzymanego ciągu arytmetycznego zwiększymy o 64 to znów otrzymamy ciąg geometryczny. Wyznacz te liczby.
Trzy liczby są kolejnymi wyrazami ciągu geometrycznego, którego iloraz jest różny od 1. Jeżeli weźmiemy kolejno drugą z nich, pierwszą i trzecią, to otrzymamy trzy kolejne wyrazy ciągu arytmetycznego. Jeżeli pierwszy wyraz tego ciągu arytmetycznego zmniejszymy o 7, drugi pozostawimy bez zmian, a trzeci zwiększymy o 3, to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz te liczby.
Ciąg jest geometryczny, a ciągi i są arytmetyczne. Oblicz .
Ciąg jest geometryczny, a ciągi i są arytmetyczne. Oblicz .
Trzy liczby o sumie 7 tworzą ciąg geometryczny. Jeżeli do drugiej liczby dodamy pierwszą to ciąg zmieni się w arytmetyczny. Wyznacz pierwszą z tych liczb. Uwzględnij wszystkie możliwości.
Trzy liczby tworzą ciąg arytmetyczny. Jeśli do pierwszej z nich dodamy 5, do drugiej 3, a do trzeciej 4, to otrzymamy rosnący ciąg geometryczny, w którym trzeci wyraz jest cztery razy większy od pierwszego. Znajdź te liczby.
Ciąg jest arytmetyczny, natomiast ciąg jest geometryczny. Oblicz oraz i podaj ten ciąg geometryczny.
Ciąg jest malejącym ciągiem geometrycznym. Jeżeli pierwszy wyraz tego ciągu zmniejszymy o 2, to otrzymamy trzywyrazowy ciąg arytmetyczny. Wyznacz i .
- Wyznacz liczbę naturalną , dla której liczby są kolejnymi wyrazami ciągu arytmetycznego;
- Dla wyznaczonej wartości , wyznacz liczbę naturalną tak, aby liczby były kolejnymi wyrazami ciągu geometrycznego.
Trzywyrazowy ciąg o wyrazach dodatnich jest arytmetyczny, natomiast ciąg
jest geometryczny. Oblicz iloraz ciągu geometrycznego.
Trzywyrazowy ciąg o wyrazach dodatnich jest arytmetyczny, natomiast ciąg
jest geometryczny. Oblicz iloraz ciągu geometrycznego.
Ciąg jest arytmetyczny i , gdzie oznacza sumę początkowych wyrazów tego ciągu. Oblicz , wiedząc, że liczby tworzą rosnący ciąg geometryczny.
Liczby są trzema kolejnymi wyrazami ciągu arytmetycznego, a liczby – trzema kolejnymi wyrazami ciągu geometrycznego. Znajdź liczby wiedząc, że ich suma jest równa 12.
Trzy liczby dodatnie tworzą ciąg arytmetyczny. Średnia arytmetyczna tych liczb jest równa 8. Jeśli od pierwszej odejmiemy 1, drugą pozostawimy bez zmian, a do trzeciej dodamy 5, to otrzymamy ciąg geometryczny. Wyznacz te liczby.
Liczby są – odpowiednio – pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Suma tych liczb jest równa 27. Ciąg jest geometryczny. Wyznacz liczby .
Suma wyrazów trzywyrazowego ciągu arytmetycznego jest równa 36. Ciąg
jest geometryczny. Oblicz i .
Trzy liczby tworzą ciąg arytmetyczny. Ich suma jest równa 45. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o 3 to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.
Liczby , spełniające warunek , są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Ciąg jest geometryczny. Wyznacz liczby oraz podaj wyrazy ciągu geometrycznego.
Ciąg jest arytmetyczny i . Ciąg jest geometryczny. Oblicz i .
Trzy liczby tworzą ciąg arytmetyczny. Ich suma jest równa 60. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o cztery, to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.
Trzy liczby, których suma jest równa 45, tworzą ciąg arytmetyczny. Jeśli drugą liczbę powiększymy o 3, a trzecią liczbę powiększymy o 9, to otrzymamy ciąg geometryczny. Wyznacz te liczby.
Trzy liczby dodatnie tworzą ciąg arytmetyczny. Średnia arytmetyczna tych liczb jest równa 10. Jeśli od pierwszej odejmiemy 2, drugą pozostawimy bez zmian, a do trzeciej dodamy 7, to otrzymamy ciąg geometryczny. Wyznacz te liczby.
Ciąg liczbowy jest arytmetyczny i , natomiast ciąg jest geometryczny. Oblicz .
Ciąg jest ciągiem arytmetycznym. Suma jego wyrazów jest równa 18. Jeżeli pierwszą z liczb zmniejszymy o 25%, a trzecią zwiększymy o 50%, to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Wyznacz liczby .
Trzy liczby których suma jest równa 15, tworzą w tej kolejności ciąg arytmetyczny. Jeśli do pierwszej z tych liczb dodać 2, od drugiej odjąć 1, a trzecią podzielić przez 2, to tak otrzymane liczby (w tej kolejności) utworzą ciąg geometryczny malejący. Wyznacz iloraz tego ciągu geometrycznego.
Trzy liczby ciąg arytmetyczny. Ich suma jest równa 15. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o jeden to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.
Ciąg liczbowy jest arytmetyczny i , natomiast ciąg jest geometryczny. Oblicz .
Trzy liczby tworzą ciąg arytmetyczny. Ich suma jest równa 15. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o jeden to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.
Trzy liczby tworzą ciąg arytmetyczny. Ich suma jest równa 30. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o dwa to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.
O liczbach wiemy, że ciąg jest arytmetyczny i , zaś ciąg jest geometryczny. Wyznacz te liczby.
Ciąg jest geometryczny i , zaś ciąg jest arytmetyczny. Oblicz .
Ciąg jest geometryczny, ciąg jest malejącym ciągiem arytmetycznym oraz . Oblicz .
Suma trzech liczb będących kolejnymi wyrazami rosnącego ciągu geometrycznego jest równa 52. Jeżeli do pierwszej liczby dodamy 2, do drugiej 12, a do trzeciej 6, to otrzymamy trzy kolejne wyrazy ciągu arytmetycznego. Wyznacz ten ciąg.
Ciąg jest trzywyrazowym ciągiem geometrycznym o wyrazach dodatnich. Ciąg
jest trzywyrazowym ciągiem arytmetycznym. Ponadto, spełniony jest warunek . Oblicz oraz .
Ciąg jest trzywyrazowym ciągiem geometrycznym o wyrazach dodatnich. Ciąg
jest trzywyrazowym ciągiem arytmetycznym. Ponadto, spełniony jest warunek . Oblicz oraz .
Trzy liczby, których suma jest równa 52, tworzą ciąg geometryczny. Jeśli pierwszą liczbę zmniejszymy o 16, to otrzymamy ciąg arytmetyczny. Wyznacz te liczby.
Trzy liczby, których suma jest równa 105, tworzą ciąg geometryczny. Jeśli pierwszą liczbę zmniejszymy o 45, to otrzymamy ciąg arytmetyczny. Wyznacz te liczby.
Dane są dwa różne ciągi: arytmetyczny i geometryczny. Każdy z nich składa się z trzech wyrazów dodatnich. Pierwsze i ostatnie wyrazy tych ciagów są równe. Suma wyrazów którego ciągu jest większa?
Ciągi i są ciągami geometrycznymi o wyrazach dodatnich, a ciąg jest ciągiem arytmetycznym. Wyznacz .
Trzy liczby tworzą ciąg geometryczny. Jeżeli do drugiej liczby dodamy 8, to ciąg ten zmieni się w arytmetyczny. Jeżeli zaś do ostatniej liczby nowego ciągu arytmetycznego dodamy 64, to tak otrzymany ciąg będzie znów geometryczny. Znajdź te liczby. Uwzględnij wszystkie możliwości.
Pomiędzy liczby 243 i 48 wstaw takie trzy liczby, aby wraz z danymi tworzyły
- ciąg arytmetyczny;
- ciąg geometryczny.
Trzy liczby całkowite tworzą ciąg geometryczny o ilorazie będącym ujemną liczbą całkowitą. Jeżeli najmniejszą z tych liczb zwiększymy o 9, to liczby te (w tej samej kolejności) są kolejnymi wyrazami ciągu arytmetycznego. Wyznacz te liczby.
Trzy różne liczby całkowite tworzą ciąg geometryczny o ilorazie będącym ujemną liczbą całkowitą. Jeżeli najmniejszą z tych liczb zwiększymy o 16, to liczby te (w tej samej kolejności) są kolejnymi wyrazami ciągu arytmetycznego. Wyznacz te liczby.
Dla jakich wartości i liczby oraz są trzema kolejnymi wyrazami zarówno ciągu arytmetycznego, jak i geometrycznego?
Dla jakich wartości i liczby oraz są trzema kolejnymi wyrazami zarówno ciągu arytmetycznego, jak i geometrycznego?
Wyznacz liczby oraz , dla których ciąg jest ciągiem arytmetycznym, natomiast ciąg jest ciągiem geometrycznym.
Ciąg jest arytmetyczny, natomiast ciąg jest geometryczny. Oblicz oraz i podaj ten ciąg geometryczny.
Ciąg jest arytmetyczny, natomiast ciąg jest geometryczny. Oblicz oraz i podaj ten ciąg geometryczny.