Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Dany jest rosnący ciąg geometryczny  2 (a,aq,aq ) , którego wszystkie wyrazy i iloraz są liczbami całkowitymi nieparzystymi. Jeśli największy wyraz ciągu zmniejszymy o 4, to otrzymamy ciąg arytmetyczny. Oblicz wyraz aq tego ciągu.

*Ukryj

Dany jest malejący ciąg geometryczny  2 (a,aq ,aq ) , którego wszystkie wyrazy i iloraz są liczbami całkowitymi niepodzielnymi przez 3. Jeśli najmniejszy wyraz ciągu zwiększymy o 18, to otrzymamy ciąg arytmetyczny. Oblicz wyraz aq tego ciągu.

Liczby 3,x,y są kolejnymi wyrazami ciągu arytmetycznego. Jeśli liczbę x zmniejszymy o 5, a liczbę y zwiększymy o 17, to otrzymane liczby będą kolejnymi wyrazami ciągu geometrycznego. Wyznacz wartości liczbowe x i y .

*Ukryj

Liczby (4,x,y) są kolejnymi wyrazami ciągu arytmetycznego. Jeśli liczbę x zwiększymy o 1, a liczbę y zwiększymy o 3, to otrzymane liczby będą kolejnymi wyrazami ciągu geometrycznego. Wyznacz x i y .

Trzy liczby tworzą ciąg arytmetyczny o r = 3 . Jeżeli pierwszą powiększymy o 8 drugą o 6 a trzecią pozostawimy bez zmian to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Znajdź te liczby.

*Ukryj

Trzy liczby tworzą ciąg arytmetyczny o r = − 2 . Jeżeli pierwszą powiększymy o 3 drugą o 1 a trzecią pozostawimy bez zmian to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Znajdź te liczby.

Trzy liczby, których suma jest równa 93, tworzą ciąg geometryczny. Te same liczby stanowią pierwszy, drugi oraz siódmy wyraz ciągu arytmetycznego. Wyznacz te liczby.

*Ukryj

Liczby x,y,z w podanej kolejności, tworzą ciąg geometryczny. Suma tych liczb wynosi 13. Te same liczby, w podanej kolejności, są odpowiednio pierwszym, drugim i piątym wyrazem ciągu arytmetycznego. Wyznacz, x,y oraz z .

Trzy liczby, których suma jest równa 105, są kolejnymi wyrazami rosnącego ciągu geometrycznego. Pierwsza z tych liczb jest jednocześnie pierwszym, druga szóstym, a trzecia dwudziestym szóstym wyrazem pewnego ciągu arytmetycznego. Oblicz te liczby.

Trzy liczby tworzą rosnący ciąg geometryczny. Suma tych liczb jest równa 28. Liczby te są jednocześnie 1, 2 i 4 wyrazem ciągu arytmetycznego. Jakie to liczby?

W trzywyrazowym ciągu geometrycznym (a1,a2,a3) spełniona jest równość a1 + a2 + a3 = 214 . Wyrazy a1, a2, a3 są – odpowiednio – czwartym, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego. Oblicz a 1 .

Trzy liczby są kolejnymi wyrazami ciągu arytmetycznego. Ich suma wynosi 18. Jeśli największą z tych liczb zwiększymy o 8, a pozostałych nie zmienimy, to uzyskamy trzy kolejne wyrazy ciągu geometrycznego. Wyznacz te liczby.

Trzy liczby tworzą ciąg geometryczny. Jeżeli drugą z nich zwiększymy o 8, to otrzymamy ciąg arytmetyczny. Jeżeli trzeci wyraz otrzymanego ciągu arytmetycznego zwiększymy o 64 to znów otrzymamy ciąg geometryczny. Wyznacz te liczby.

*Ukryj

Trzy liczby są kolejnymi wyrazami ciągu geometrycznego, którego iloraz jest różny od 1. Jeżeli weźmiemy kolejno drugą z nich, pierwszą i trzecią, to otrzymamy trzy kolejne wyrazy ciągu arytmetycznego. Jeżeli pierwszy wyraz tego ciągu arytmetycznego zmniejszymy o 7, drugi pozostawimy bez zmian, a trzeci zwiększymy o 3, to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz te liczby.

Ciąg (a,b,c) jest geometryczny, a ciągi (4a − 4,2b − 2,c − 1) i (a + 5,b + 3,c − 15) są arytmetyczne. Oblicz a,b,c .

*Ukryj

Ciąg (a,b,c) jest geometryczny, a ciągi  1 (a + 1,b − 3,3c + 7) i (3a − 1,2b − 2 ,c− 3) są arytmetyczne. Oblicz a,b,c .

Trzy liczby o sumie 7 tworzą ciąg geometryczny. Jeżeli do drugiej liczby dodamy pierwszą to ciąg zmieni się w arytmetyczny. Wyznacz pierwszą z tych liczb. Uwzględnij wszystkie możliwości.

Trzy liczby tworzą ciąg arytmetyczny. Jeśli do pierwszej z nich dodamy 5, do drugiej 3, a do trzeciej 4, to otrzymamy rosnący ciąg geometryczny, w którym trzeci wyraz jest cztery razy większy od pierwszego. Znajdź te liczby.

Ciąg (1 5,x,5 + y) jest arytmetyczny, natomiast ciąg (x,y,20) jest geometryczny. Oblicz x oraz y i podaj ten ciąg geometryczny.

  • Wyznacz liczbę naturalną n ≥ 2 , dla której liczby (n1),(n2),(n+21) są kolejnymi wyrazami ciągu arytmetycznego;
  • Dla wyznaczonej wartości n , wyznacz liczbę naturalną k tak, aby liczby  n n n+1 (k),(k+1),(k+2) były kolejnymi wyrazami ciągu geometrycznego.

Trzywyrazowy ciąg (a,b,c) o wyrazach dodatnich jest arytmetyczny, natomiast ciąg

( ) 1-, 2-,-----1------ a 3b 2a+ 2b+ c

jest geometryczny. Oblicz iloraz ciągu geometrycznego.

*Ukryj

Trzywyrazowy ciąg (a,b,c) o wyrazach dodatnich jest arytmetyczny, natomiast ciąg

( ) ----7-----, 1-, 2 a+ b+ 2c b 9a

jest geometryczny. Oblicz iloraz ciągu geometrycznego.

Ciąg (bn) jest arytmetyczny i S60 − S39 = 10 5 , gdzie Sn oznacza sumę n początkowych wyrazów tego ciągu. Oblicz x , wiedząc, że liczby 1, (b47 + b53)x , 5x + b 50 tworzą rosnący ciąg geometryczny.

Liczby a,b,c są trzema kolejnymi wyrazami ciągu arytmetycznego, a liczby a + 1,b + 2,c + 6 – trzema kolejnymi wyrazami ciągu geometrycznego. Znajdź liczby a,b,c wiedząc, że ich suma jest równa 12.

*Ukryj

Trzy liczby tworzą ciąg arytmetyczny. Ich suma jest równa 30. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o dwa to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.

Ciąg liczbowy (a,b,c) jest arytmetyczny i a+ b+ c = 33 , natomiast ciąg (a − 1,b + 5,c + 19) jest geometryczny. Oblicz a,b ,c .

Trzy liczby dodatnie tworzą ciąg arytmetyczny. Średnia arytmetyczna tych liczb jest równa 8. Jeśli od pierwszej odejmiemy 1, drugą pozostawimy bez zmian, a do trzeciej dodamy 5, to otrzymamy ciąg geometryczny. Wyznacz te liczby.

Ciąg (a ,b,c) jest ciągiem arytmetycznym. Suma jego wyrazów jest równa 18. Jeżeli pierwszą z liczb zmniejszymy o 25%, a trzecią zwiększymy o 50%, to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Wyznacz liczby a,b,c .

O liczbach a ,b ,c wiemy, że ciąg (a,b,c) jest arytmetyczny i a+ c = 10 , zaś ciąg (a+ 1,b+ 4,c+ 19) jest geometryczny. Wyznacz te liczby.

Trzy liczby, których suma jest równa 45, tworzą ciąg arytmetyczny. Jeśli drugą liczbę powiększymy o 3, a trzecią liczbę powiększymy o 9, to otrzymamy ciąg geometryczny. Wyznacz te liczby.

Ciąg (a ,b,c) jest arytmetyczny a+ b+ c = 33 . Ciąg (a,b+ 3 ,c+ 1 3) jest geometryczny. Oblicz a,b i c .

Trzy liczby tworzą ciąg arytmetyczny. Ich suma jest równa 45. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o 3 to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.

Trzy liczby tworzą ciąg arytmetyczny. Ich suma jest równa 15. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o jeden to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.

Trzy liczby ciąg arytmetyczny. Ich suma jest równa 15. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o jeden to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.

Trzy liczby a,b,c których suma jest równa 15, tworzą w tej kolejności ciąg arytmetyczny. Jeśli do pierwszej z tych liczb dodać 2, od drugiej odjąć 1, a trzecią podzielić przez 2, to tak otrzymane liczby (w tej kolejności) utworzą ciąg geometryczny malejący. Wyznacz iloraz tego ciągu geometrycznego.

Ciąg liczbowy (a,b,c) jest arytmetyczny i a+ b+ c = 36 , natomiast ciąg (a − 2,b + 4,c + 18) jest geometryczny. Oblicz a,b ,c .

Trzy liczby dodatnie tworzą ciąg arytmetyczny. Średnia arytmetyczna tych liczb jest równa 10. Jeśli od pierwszej odejmiemy 2, drugą pozostawimy bez zmian, a do trzeciej dodamy 7, to otrzymamy ciąg geometryczny. Wyznacz te liczby.

Trzy liczby tworzą ciąg arytmetyczny. Ich suma jest równa 60. Jeśli pierwszą i trzecią liczbę pozostawimy bez zmian, a drugą pomniejszymy o cztery, to otrzymamy trzy kolejne wyrazy ciągu geometrycznego. Oblicz wyrazy ciągu arytmetycznego.

Liczby a,b,c , spełniające warunek 3a + b + 3c = 77 , są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Ciąg (a,b + 1,2c) jest geometryczny. Wyznacz liczby a,b,c oraz podaj wyrazy ciągu geometrycznego.

Liczby a,b,c są – odpowiednio – pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Suma tych liczb jest równa 27. Ciąg (a− 2,b,2c + 1) jest geometryczny. Wyznacz liczby a,b,c .

Ciąg (a ,b,c) jest geometryczny i a + b + c = 26 , zaś ciąg (a − 5 ,b − 4 ,c − 11 ) jest arytmetyczny. Oblicz a,b,c .

*Ukryj

Trzy liczby, których suma jest równa 105, tworzą ciąg geometryczny. Jeśli pierwszą liczbę zmniejszymy o 45, to otrzymamy ciąg arytmetyczny. Wyznacz te liczby.

Ciąg (a ,b,c) jest geometryczny, ciąg (a + 1,b + 5,c) jest malejącym ciągiem arytmetycznym oraz a+ b+ c = 39 . Oblicz a ,b,c .

Trzy liczby, których suma jest równa 52, tworzą ciąg geometryczny. Jeśli pierwszą liczbę zmniejszymy o 16, to otrzymamy ciąg arytmetyczny. Wyznacz te liczby.

Suma trzech liczb będących kolejnymi wyrazami rosnącego ciągu geometrycznego jest równa 52. Jeżeli do pierwszej liczby dodamy 2, do drugiej 12, a do trzeciej 6, to otrzymamy trzy kolejne wyrazy ciągu arytmetycznego. Wyznacz ten ciąg.

Dane są dwa różne ciągi: arytmetyczny i geometryczny. Każdy z nich składa się z trzech wyrazów dodatnich. Pierwsze i ostatnie wyrazy tych ciagów są równe. Suma wyrazów którego ciągu jest większa?

Ciągi (a,b,c) i (a − 2,b − 2,c − 1) są ciągami geometrycznymi o wyrazach dodatnich, a ciąg (3a + 2,3b,c + 13) jest ciągiem arytmetycznym. Wyznacz a,b,c .

*Ukryj

Trzy liczby tworzą ciąg geometryczny. Jeżeli do drugiej liczby dodamy 8, to ciąg ten zmieni się w arytmetyczny. Jeżeli zaś do ostatniej liczby nowego ciągu arytmetycznego dodamy 64, to tak otrzymany ciąg będzie znów geometryczny. Znajdź te liczby. Uwzględnij wszystkie możliwości.

Pomiędzy liczby 243 i 48 wstaw takie trzy liczby, aby wraz z danymi tworzyły

  • ciąg arytmetyczny;
  • ciąg geometryczny.

Trzy liczby całkowite tworzą ciąg geometryczny o ilorazie będącym ujemną liczbą całkowitą. Jeżeli najmniejszą z tych liczb zwiększymy o 9, to liczby te (w tej samej kolejności) są kolejnymi wyrazami ciągu arytmetycznego. Wyznacz te liczby.

Dla jakich wartości x i y liczby  2 x + y,x oraz y + 2 są trzema kolejnymi wyrazami zarówno ciągu arytmetycznego, jak i geometrycznego?

*Ukryj

Dla jakich wartości a i b liczby  2 a− b,a oraz 2− b są trzema kolejnymi wyrazami zarówno ciągu arytmetycznego, jak i geometrycznego?

Wyznacz liczby a oraz b , dla których ciąg (a,b ,1 ) jest ciągiem arytmetycznym, natomiast ciąg (1 ,a,b) jest ciągiem geometrycznym.

*Ukryj

Ciąg (2 ,x,y− 2) jest arytmetyczny, natomiast ciąg (x ,y,16) jest geometryczny. Oblicz x oraz y i podaj ten ciąg geometryczny.

Ciąg (1 ,x,y− 1) jest arytmetyczny, natomiast ciąg (x ,y,12) jest geometryczny. Oblicz x oraz y i podaj ten ciąg geometryczny.

Strona 1 z 2>